Answer on Question \#42265-Chemistry - Physical Chemistry

Question:

Calculate the mass of nitric acid needed to make 400 tonnes of NH_{3} ?
We suppose that this question was about the ammonium nitrate $\mathrm{NH}_{4} \mathrm{NO}_{3}$, because the ammonia cannot be synthesized easily from nitric acid HNO_{3}. The ammonium nitrate $\mathrm{NH}_{4} \mathrm{NO}_{3}$ can be synthesized from HNO_{3} and NH_{3}.

Solution:

Chemical reaction:

$$
\mathrm{HNO}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

First of all, we will find number of moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ which synthesised in chemical reaction.

$$
\vartheta=\frac{m}{M}
$$

where ϑ - is number of moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}, m$ - is mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}, M$ - is molecular mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}$.

$$
\begin{gathered}
M\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=2 \times 14.007+4 \times 1.008+3 \times 15.9949=80.0307 \approx 80^{g} / \mathrm{mol} \\
\vartheta=\frac{400000000 \mathrm{~g}}{80^{g} / \mathrm{mole}}=5000000 \mathrm{~mol}
\end{gathered}
$$

According to the reaction equation, th 1 mole of HNO_{3} yields 1 mole of $\mathrm{NH}_{4} \mathrm{NO}_{3}$.

$$
M\left(\mathrm{HNO}_{3}\right)=1.008+14.007+3 \times 15.9949=62.9997 \approx 63 \mathrm{~g} / \mathrm{mole}
$$

Now we can calculate mass of HNO_{3} needed to make 400 tonnes of ammonium nitrate.

$$
m=\vartheta \times M=5000000 \times 63=315000000 \mathrm{~g}=315 \text { tonnes }
$$

Answer:

315 tonnes of nitric acid needed to make 400 tonnes of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.

