Answer on Question \#42218, Chemistry, Physical Chemistry

Question:

At $25{ }^{\circ} \mathrm{C}$, A and B have vapor pressures of 0.200 and 0.330 atm respectively. If the mol fraction of A in the liquid phase is 0.400 , the vapor pressure of the solution at $25{ }^{\circ} \mathrm{C}$ is:

Answer:

The total pressure in system can be calculated by the following equation:
$P=\frac{P_{A}^{*} P_{B}^{*}}{P_{A}^{*}+\left(P_{B}^{*}-P_{A}^{*}\right) y_{A}}$
$y_{A}=\frac{x_{A} P_{A}^{*}}{x_{A} P_{A}^{*}+x_{B} P_{B}^{*}}=\frac{x_{A} P_{A}^{*}}{x_{A} P_{A}^{*}+\left(1-x_{A}\right) P_{B}^{*}}$
where $P_{A}{ }^{*}$ and $P_{B} *$ are vapor pressures of A and B respectively, y_{A} is the mole fraction of A in gas phase, x_{A} is the mole fraction of A in liquid phase.
$y_{A}=\frac{0.4 \cdot 0.2}{0.4 \cdot 0.2+0.6 \cdot 0.33}=0.2878$
$P=\frac{0.2 \cdot 0.33}{0.2+(0.33-0.2) 0.2878}=0.280 \mathrm{~atm}$

