Answer on Question \#42131 - Chemistry - Inorganic Chemistry

Question

In a solution at $25^{\circ} \mathrm{C}$, the $\left[\mathrm{H}^{+}\right]$is $3.5 \times 10^{-6} \mathrm{M}$. What is the $\left[\mathrm{OH}^{-}\right]$?

Answer:

Water itself is a weak acid and a weak base. It dissociates according to the equilibrium:

$$
2 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{aq)}+\mathrm{OH}^{-}(\mathrm{aq)}\right.
$$

with a dissociation constant, K_{w} defined as

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right],
$$

where $\left[\mathrm{H}^{+}\right]$stands for the concentration of the aquated hydronium ion and $\left[\mathrm{OH}^{-}\right]$represents the concentration of the hydroxide ion. K_{w} has a value of about 10^{-14} at $25^{\circ} \mathrm{C}$.

Therefore the concentration of hydroxide ions in the solution equals:

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{W}}{\left[\mathrm{H}^{+}\right]}=\frac{10^{-14}}{3.5 \times 10^{-6}}=2.86 \times 10^{-9} \mathrm{M}
$$

Answer: $\left[\mathrm{OH}^{-}\right]=2.86 \times 10^{-9} \mathrm{M}$.

