Answer on the question \#42044, Chemistry, Physical Chemistry

Question:

A 6.11 g sample of $\mathrm{Cu}-\mathrm{Zn}$ alloy reacts with HCL to produce hydrogen gas. If the hydrogen gas has a volume of 1.26 L , temperature of 22 C and a pressure of 728 mm Hg , what is the percent of Zn in the alloy? (Copper does not react with HCL.)

Solution:

$\mathrm{Zn}+2 \mathrm{HCl}=\mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
According to the reaction equation, the amounts of zinc and hydrogen relate as:
$\mathrm{n}(\mathrm{Zn})=\mathrm{n}\left(\mathrm{H}_{2}\right)$
According to ideal gas law, the amount of gas and its volume at temperature T and pressure p relate as:

$$
\mathrm{pV}=\mathrm{nRT}
$$

$728 \mathrm{~mm} \mathrm{Hg}=133,3223684 * 728 \mathrm{~Pa}=97.0587 \mathrm{kPa}$

$$
\begin{gathered}
\mathrm{n}\left(\mathrm{H}_{2}\right)=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{97058.7 \mathrm{~Pa} * 1.26 * 10^{-3} \mathrm{~m}^{3}}{8.314 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}} *(273.15+22) \mathrm{K}}=0.04984 \mathrm{~mol} \\
\mathrm{n}(\mathrm{Zn})=0.04984 \mathrm{~mol} \\
m(\mathrm{Zn})=\mathrm{n}(\mathrm{Zn}) * \mathrm{M}(\mathrm{Zn})=0.04984 * 65.38=3.258 \mathrm{~g} \\
\mathrm{w}(\mathrm{Zn})=\frac{\mathrm{m}(\mathrm{Zn})}{\mathrm{m}(\text { alloy })} * 100 \%=\frac{3.258}{6.11} * 100 \%=53.3 \%
\end{gathered}
$$

Answer: 53.3\%

