Answer on the question #41910, Chemistry, Physical Chemistry

Question:

When 4.0 g of sulfur are combined with 4.0g of oxygen 8.0 g of surful dioxide so2 are formed what mass of oxygen would be required to convert 7.0 g of sulfur into sulfur trioxide so3?

Solution:

 $S + O_2 = SO_2$ $n(S) = n(O_2)$ $2S + 3O_2 = 2SO_3$ $n(S)/2 = n(O_2)/3$ n(S) = m(S)/M(S) = 7/32 = 0.219 mol $n(O_2) = n(S)^*3/2 = 0.328$ mol

 $m(O_2) = n(O_2) * M(O_0) = 0.328*32 = 10.5 g$

Answer: 10.5 g O_2 is required to convert 7.0 g of sulfur into sulfur trioxide.