Answer on the question \#41910, Chemistry, Physical Chemistry

Question:

When 4.0 g of sulfur are combined with 4.0 g of oxygen 8.0 g of surful dioxide so 2 are formed what mass of oxygen would be required to convert 7.0 g of sulfur into sulfur trioxide so3?

Solution:

$\mathrm{S}+\mathrm{O}_{2}=\mathrm{SO}_{2}$
$\mathrm{n}(\mathrm{S})=\mathrm{n}\left(\mathrm{O}_{2}\right)$
$2 \mathrm{~S}+3 \mathrm{O}_{2}=2 \mathrm{SO}_{3}$
$\mathrm{n}(\mathrm{S}) / 2=\mathrm{n}\left(\mathrm{O}_{2}\right) / 3$
$\mathrm{n}(\mathrm{S})=\mathrm{m}(\mathrm{S}) / \mathrm{M}(\mathrm{S})=7 / 32=0.219 \mathrm{~mol}$
$\mathrm{n}\left(\mathrm{O}_{2}\right)=\mathrm{n}(\mathrm{S}) * 3 / 2=0.328 \mathrm{~mol}$
$\mathrm{m}\left(\mathrm{O}_{2}\right)=\mathrm{n}\left(\mathrm{O}_{2}\right) * \mathrm{M}\left(\mathrm{O}_{0}\right)=0.328 * 32=10.5 \mathrm{~g}$
Answer: $10.5 \mathrm{~g} \mathrm{O}_{2}$ is required to convert 7.0 g of sulfur into sulfur trioxide.

