Answer on Question \#41849, Chemistry, Other

Task:

Calculate the concentration of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ in a solution prepared by diluting 81.00 mL of 0.217 M $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ to a volume of 500.0 mL in a volumetric flask?

Answer:

$$
\mathrm{c}_{\mathrm{M}}=\frac{v}{\mathrm{v}} \quad \mathrm{v}=\frac{\mathrm{m}}{\mathrm{M}}
$$

where C_{M}-molar concentration of a solution;
v-amount of moles of a certain substance;
m-mass of a substance, gramms;
M -molar mass of a substance, $\mathrm{g} / \mathrm{mol}$.
The amount of moles in an initial solution of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is:
$v=C_{M} \cdot V$
$v\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\right)=0.217 \cdot \frac{81.00}{1000}=0.018 \mathrm{moles}$
That is why the concentration of the solution after diluting in a volumetric flask will be:
$\mathrm{C}_{\mathrm{M}}\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\right)=\frac{0.018}{0.500}=0.036 \mathrm{M}$

