Answer on Question \#41589-Chemistry - Other

Question

Find the molality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution whose specific gravity is $1.98 \mathrm{~g} / \mathrm{ml}$ and 90% by volume $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Solution

Molality (b) of a solution is defined as the amount of substance (in mol) of solute ($n_{\text {solute }}$) divided by the mass (in kg) of the solvent ($m_{\text {solvent }}$):

$$
b=\frac{n_{\text {solute }}}{m_{\text {solvent }}}
$$

Let us assume we have 1000 ml of the solution. Mass of the solution:

$$
m_{\text {solution }}=V_{\text {solution }} \cdot \rho_{\text {solution }}=1000 \mathrm{ml} \cdot 1.98 \mathrm{~g} / \mathrm{ml}=1980 \mathrm{~g}
$$

Volume of solvent:

$$
V_{\text {solvent }}=\frac{V_{\text {solution }} \cdot(100-90)}{100}=1000 \mathrm{ml} \cdot 0.1=100 \mathrm{ml}
$$

Density of the solvent (water) is $1.00 \mathrm{~g} / \mathrm{ml}$, so the mass of the solvent:

$$
m_{\text {solvent }}=V_{\text {solvent }} \cdot \rho_{\text {solvent }}=100 \mathrm{ml} \cdot \frac{1.00 \mathrm{~g}}{\mathrm{ml}}=100 \mathrm{~g}=0.1 \mathrm{~kg}
$$

Mass of the solute:

$$
m_{\text {solute }}=m_{\text {solution }}-m_{\text {solvent }}=1980 \mathrm{~g}-100 \mathrm{~g}=1880 \mathrm{~g}
$$

Number of moles of the solute $\left(\mathrm{M}_{\text {solute }}=\mathrm{M}_{\mathrm{H} 2504}=98 \mathrm{~g} / \mathrm{mol}\right)$:

$$
n_{\text {solute }}=\frac{m_{\text {solute }}}{M_{\text {solute }}}=\frac{1880 \mathrm{~g}}{98 \frac{\mathrm{~g}}{\mathrm{~mol}}}=19.18 \mathrm{~mol}
$$

Molality of the solution:

$$
b=\frac{n_{\text {solute }}}{m_{\text {solvent }}}=\frac{19.18 \mathrm{~mol}}{0.1 \mathrm{~kg}}=191.8 \mathrm{~mol} / \mathrm{kg}
$$

Answer: 1918 mol/kg

