Answer on Question \#41550 - Chemistry - Inorganic Chemistry

Question:

The distance between the oxygen molecule and each of the hydrogen atoms in a water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ molecule is $0.96 \AA$ and the angle between the two oxygen-hydrogen bonds is 105°. Treating the atoms as particles, find the centre of mass of the system.

Solution:

A water molecule may be represented as follows

Thus, we have an isosceles triangle $\triangle \mathrm{HOH}$, where
$\mathrm{HO}=0.96 \AA$
angle $\mathrm{LHOH}=105^{\circ}$
Let us designate the centre of mass of the system in figure above as \boldsymbol{C}.
Since water molecule is symmetric the center of mass lies on the axis of symmetry, i.e. it is equidistant from the hydrogen atoms (H). Let us designate the midpoint between H atoms as \boldsymbol{D} ($H D=H H / 2$).
Thus, in given case to find the centre of mass of the system means to find values of HD, DC and CO.
In rectangular triangle $\triangle \mathrm{DOH}$ angle $\mathrm{LDOH}=\mathrm{LHOH} / 2=105^{\circ} / 2=52.5^{\circ}$
$O D=H O \cdot \cos (\angle D O H)=0.96 \cdot \cos \left(52.5^{\circ}\right)=0.96 \cdot 0.609=0.58 \AA$
$H D=H O \cdot \sin \left(\llcorner D O H)=0.96 \cdot \sin \left(52.5^{\circ}\right)=0.96 \cdot 0.793=0.76 \AA\right.$
$D C+C O=O D=0.58 \AA$
Molar mass of O atom $M_{O}=16.00 \mathrm{~g} / \mathrm{mol}$, molar mass of H atom $M_{H}=i s 1.01 \mathrm{~g} / \mathrm{mol}$.
In consideration of law of the lever:
$\mathrm{CO} \cdot \mathrm{Mo}_{\mathrm{O}}=\mathrm{DC} \cdot 2 \mathrm{M}_{\mathrm{H}}$
Assigning $D C=x, C O=y$ and substituting the known values we get the system of two equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=0.58 \\
16.00 \cdot y=2 \cdot 1.01 \cdot x
\end{array}\right. \\
& y=2.02 \cdot x / 16.00=0.126 \cdot x \\
& x+0.126 \cdot x=0.58 \\
& 1.126 \cdot x=0.58 \\
& x=0.58 / 1.126=0.51 \\
& y=0.58-x=0.58-0.51=0.07 \\
& \text { So, DC }=0.07 \AA \text { and } C O=0.51 \AA .
\end{aligned}
$$

Answer

