Answer on Question \#41279, Chemistry, Other

Task:

Calculate the volume, mass and number of molecules liberated when 299g of sodium reacts with excess water at STP.

Answer:

The chemical reaction for this process is:
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{NaOH}+\mathrm{H}_{2} \uparrow$
The amount of sodium in the process is:

$$
v(\mathrm{Na})=\frac{\mathrm{m}}{A_{r}(N a)}
$$

where m-mass, grams;
A_{r}-atomic mass, gram/mol.
$v(\mathrm{Na})=\frac{299}{23}=13 \mathrm{moles}$
We can assume from the reaction, that:
$\frac{v(\mathrm{Na})}{v\left(\mathrm{H}_{2}\right)}=\frac{2}{1}$
That is why:

$$
v\left(H_{2}\right)=\frac{13}{2}=6.5 \mathrm{moles}
$$

For STP conditions:

$$
\begin{aligned}
& v\left(\mathrm{H}_{2}\right)=v_{m} \cdot v \\
& v\left(\mathrm{H}_{2}\right)=22.4 \times 6.5=145.6 \mathrm{~L}
\end{aligned}
$$

The mass from the amount of substance could be found as:

$$
m\left(H_{2}\right)=v\left(H_{2}\right) \cdot A\left(H_{2}\right)=6.5 \cdot 2=13 g
$$

The number of molecules could be calculated over Avogadro's number ($\mathrm{N}_{\mathrm{A}}=6.02 \cdot 10^{23} \mathrm{~mol}^{-1}$):

$$
N=\mathrm{N}_{\mathrm{A}} \cdot v\left(H_{2}\right)=6.02 \cdot 10^{23} \cdot 6.5=39.13 \cdot 10^{23}
$$

