Answer on Question #41127 - Chemistry – Other

Question:

pH values of 0.1 M HCL and 0.1 M CH₃COOH are

Answer:

1. pH equals:

pH = -lg [H⁺]

HCl is a strong acid and it fully dissociates in water:

$$HCl_{(aq)} \leftrightarrow H^+_{(aq)} + Cl^-_{(aq)}$$

We see that concentration of HCl equals H^+ ion concentration. Therefore H^+ ion concentration is:

pH value of 0.1 M HCl is:

2. Acetic acid CH₃COOH ionizes partially, so we need the pKa or Ka value of acetic acid. Dissociation of CH₃COOH:

$$CH_3COOH_{(aq)} \leftrightarrow H^+_{(aq)} + CH_3COO^-_{(aq)}$$

Ka is dissociation constant which is concentration of product/concentration of reactant:

$$Ka = [CH_3COO^-] * [H^+] / [CH_3COOH]$$

After partial dissociation, $[CH_3COOH]$ is still approximately 0.1M, and $[CH_3COO^-] = [H^+]$.

Ka of CH₃COOH = 1.74×10^{-5} (from data book). Then H⁺ ion concentration equals:

$$1.74 * 10^{-5} = [H^+]^2 / 0.1$$

 $[H^+]^2 = 1.74*10^{-5} * 0.1$
 $[H^+]^2 = 1.74*10^{-6}$
 $[H^+] = 1.32*10^{-3}$

pH value of 0.1 M CH₃COOH is:

pH = -lg (1.32*10⁻³) = 2.88

Answer: 1. pH = 1

2. pH = 2.88

http://www.AssignmentExpert.com/