Answer on Question \#41127-Chemistry - Other

Question:

pH values of 0.1 M HCL and $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ are

Answer:

1. pH equals:

$$
\mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]
$$

HCl is a strong acid and it fully dissociates in water:

$$
\mathrm{HCl}_{(\mathrm{aq})} \leftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

We see that concentration of HCl equals H^{+}ion concentration. Therefore H^{+}ion concentration is:

$$
\left[\mathrm{H}^{+}\right]=\mathrm{C}(\mathrm{HCl})=0.1 \mathrm{M}=0.1 \mathrm{~mol} / \mathrm{L}
$$

pH value of 0.1 M HCl is:

$$
\mathrm{pH}=-\lg (0.1)=1
$$

2. Acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ ionizes partially, so we need the pK a or Ka value of acetic acid. Dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq)}} \leftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}
$$

Ka is dissociation constant which is concentration of product/concentration of reactant:

$$
\mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] *\left[\mathrm{H}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]
$$

After partial dissociation, $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ is still approximately 0.1 M , and $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]$.
Ka of $\mathrm{CH}_{3} \mathrm{COOH}=1.74 * 10^{-5}$ (from data book). Then H^{+}ion concentration equals:

$$
\begin{gathered}
1.74 * 10^{-5}=\left[\mathrm{H}^{+}\right]^{2} / 0.1 \\
{\left[\mathrm{H}^{+}\right]^{2}=1.74 * 10^{-5} * 0.1} \\
{\left[\mathrm{H}^{+}\right]^{2}=1.74 * 10^{-6}} \\
{\left[\mathrm{H}^{+}\right]=1.32 * 10^{-3}}
\end{gathered}
$$

pH value of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is:

$$
\mathrm{pH}=-\lg \left(1.32^{*} 10^{-3}\right)=2.88
$$

Answer: 1. $\mathrm{pH}=1$
2. $\mathrm{pH}=2.88$

