Answer on Question \#41124 - Chemistry - Physical Chemistry

Question:

pH of $10^{\wedge}-8 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is...

Answer:

$\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong mineral acid. Strong acid is compound that completely dissociated in water.

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] ;
$$

So for every mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ you'll have twice the H^{+}.
$\mathrm{pH}=-\log _{10}\left[2^{*} 10^{-8}\right]=7.7$
This is clearly wrong as an acid solution should have a pH of less than 7.
Usually, with a strong acid, you can ignore the contribution of the self-ionization of water.
But, if the acid it too dilute, you cannot do that.
Water self-ionizes in such a way that $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{\wedge}(-14)$
The total $\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}^{+}\right.$, from $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right]+\left[\mathrm{H}^{+}\right.$, from self-ionization of $\left.\mathrm{H}_{2} \mathrm{O}\right]$
We were given the first part: $\left[\mathrm{H}+\right.$, from $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right]=2^{*} 10^{\wedge}(-8) \mathrm{M}$
The second part is easy enough to compute:
Let us set $\left[\mathrm{H}^{+}\right.$, from self-ionization of $\left.\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{x}$
The $\left[\mathrm{OH}^{-}\right]=x$ also because its only source is the self-ionization of water:
$\mathrm{H}_{2} \mathrm{O}<-->\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
Putting this altogether we get:
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{\wedge}(-14)$
$\left(x+2^{*} 10^{\wedge}-8\right)(x)=10^{\wedge}(-14)$
Now we need to solve this quadratic equation:
$x^{2}+2^{*}\left(10^{\wedge-8)} x-10^{\wedge}(-14)=0\right.$
$x=9.05 \times 10^{\wedge}-8$
Note: there is another root, but it is negative and thus has to be discarded since it is impossible to have a negative concentration.
[H^{+}from self-ioniation of water] $=\mathrm{x}=9.05 \times 10^{\wedge}(-8)$
and, we already know $\left[\mathrm{H}^{+}\right.$from $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right]=2 * 10^{\wedge}(-8)$
$\left[\mathrm{H}^{+}\right]=9.05 \times 10^{\wedge}(-8)+2^{*} 10^{\wedge}(-8)$
$\left[\mathrm{H}^{+}\right]=1.105 \times 10^{\wedge}-7$
$\mathrm{pH}=6.96$

Answer:

$\mathrm{pH}=6.96$

