Answer on Question #41124 – Chemistry – Physical Chemistry

Question:

pH of 10^-8 M H₂SO₄ is...

Answer:

H₂SO₄ is a strong mineral acid. Strong acid is compound that completely dissociated in water.

pH = -log₁₀ [H⁺];

So for every mol of H_2SO_4 you'll have twice the H^+ .

 $pH = -log_{10} [2*10^{-8}] = 7.7$

This is clearly wrong as an acid solution should have a pH of less than 7.

Usually, with a strong acid, you can ignore the contribution of the self-ionization of water. But, if the acid it too dilute, you cannot do that. Water self-ionizes in such a way that $[H^+][OH^-] = 10^{(-14)}$ The total $[H^+] = [H^+, \text{ from } H_2SO_4] + [H^+, \text{ from self-ionization of } H_2O]$ We were given the first part: $[H+, from H_2SO_4] = 2* 10^{-8} M$ The second part is easy enough to compute: Let us set $[H^+$, from self-ionization of $H_2O] = x$ The $[OH^{-}] = x$ also because its only source is the self-ionization of water: $H_2O <--> H^+ (aq) + OH^- (aq)$ Putting this altogether we get: $[H^+][OH^-] = 10^{-14}$ $(x+2*10^{-8})(x) = 10^{-14}$ Now we need to solve this quadratic equation: $x^{2} + 2^{*}(10^{-8})x - 10^{-14} = 0$ x = 9.05×10^-8 Note: there is another root, but it is negative and thus has to be discarded since it is impossible to have a negative concentration. [H⁺ from self-ioniation of water] = $x = 9.05 \times 10^{-8}$ and, we already know $[H^+ \text{ from } H_2SO_4] = 2*10^{(-8)}$ $[H^+] = 9.05 \times 10^{-8} + 2^{10^{-8}}$ $[H^+] = 1.105 \times 10^{-7}$ pH = 6.96Answer:

рН = 6.96

http://www.AssignmentExpert.com/