Answer on Question \#41036-Chemistry - Other

Question:

$\mathrm{X}_{2}+3 \mathrm{Y}_{2} \rightarrow 2 \mathrm{XY}_{3} \quad \Delta \mathrm{H} 1=-320 \mathrm{~kJ}$
$\mathrm{X}_{2}+2 \mathrm{Z}_{2} \rightarrow 2 \mathrm{XZ}_{2} \quad \Delta \mathrm{H} 2=-170 \mathrm{~kJ}$
$2 Y_{2}+Z_{2} \rightarrow 2 Y_{2} Z \quad \Delta H 3=-250 \mathrm{~kJ}$
Calculate the change in enthalpy for the following reaction:
$4 X Y_{3}+7 Z_{2} \rightarrow 6 Y_{2} Z+4 X Z_{2}$
$\Delta H=$ \qquad ? kJ

Solution.

$X_{2}+3 Y_{2} \rightarrow 2 X Y_{3}$
$X_{2}+2 Z_{2} \rightarrow 2 X Z_{2}$
$2 Y_{2}+Z_{2} \rightarrow 2 Y_{2} Z$
$4 X Y_{3}+7 Z_{2} \rightarrow 6 Y_{2} Z+4 X Z_{2}(4)$
It can easily be seen, that the fourth equation can be expressed through the sum of first three in such way:
$(4)=-2^{*}(1)+2^{*}(2)+3^{*}(3)$
According to Hess's law, the change in enthalpy for the reaction is:
$\Delta \mathrm{H}=3 * \Delta \mathrm{H}_{3}+2 * \Delta \mathrm{H}_{2}-2 * \Delta \mathrm{H}_{1}=-250 * 3-170 * 2+320 * 2=-450 \mathrm{~kJ}$
Answer: $\Delta \mathrm{H}=-450 \mathrm{~kJ}$

