Answer on Question #40615-Chemistry-Inorganic Chemistry

Question

An X-ray photon of wavelength 0.989 nm strikes a surface. The emitted electron has a kinetic energy of 969eV. What is the binding energy of the electron in kJ/mol?

Solution

The electron binding energy of each of the emitted electrons can be determined by using an equation that is based on the work of Ernest Rutherford:

 $E_{binding} = E_{photon} - (E_{kinetic} + \varphi)$

where $E_{binding}$ is the binding energy of the electron, E_{photon} is the energy of the X-ray photons being used, $E_{kinetic}$ is the kinetic energy of the electron as measured by the instrument and φ is the work function of the spectrometer.

It is given that $E_{kinetic} = 969 \text{ eV} = 969 \cdot 1.60 \cdot 10^{-19} = 1.55 \cdot 10^{-16} \text{ J}$ Since the work function φ is not specified in the task it can be neglected ($\varphi = 0$). Energy of the photon is

$$E_{photon} = hv = \frac{hc}{\lambda}$$

where h – Plank constant (h = 6.63·10⁻³⁴ J·s), c – speed of light (c = 3.00·10⁸ m·s⁻¹), λ – wave length of the photon. In given case λ = 0.989 nm = 9.89·10⁻¹⁰ m

 $E_{photon} = \frac{hc}{\lambda} = \frac{6.63 \cdot 10^{-34} \cdot 3.00 \cdot 10^8}{9.89 \cdot 10^{-10}} = 2.01 \cdot 10^{-16} J$ The binding energy:

 $E_{binding} = E_{photon} - E_{kinetic} = 2.01 \cdot 10^{-16} - 1.55 \cdot 10^{-16} = 4.60 \cdot 10^{-17} J = 4.60 \cdot 10^{-20} k J$ To convert the value to kJ/mol we should multiply it by Avogadro constant (N_A = 6.02·10²³ mol⁻¹) $E_{binding} = 4.60 \cdot 10^{-20} k J \cdot 6.02 \cdot 10^{23} mol^{-1} = 27692 k J/mol$

Answer: 27692 kJ/mol