Answer on Question\#40496, Chemistry, Other

Table salt, $\mathrm{NaCl}(\mathrm{s})$, and sugar, $\mathrm{C} 12 \mathrm{H} 22 \mathrm{O} 11(\mathrm{~s})$, are accidentally mixed. A $6.00-\mathrm{g}$ sample is burned, and 2.30 g of $\mathrm{CO} 2(\mathrm{~g})$ is produced. What was the mass percentage of the table salt in the mixture?

Answer:

The equation of this reaction is:
$\mathrm{C} 12 \mathrm{H} 22 \mathrm{O} 11+12 \mathrm{O} \rightarrow 12 \mathrm{CO} 2+11 \mathrm{H} 2 \mathrm{O}$

If we know mass of CO 2 which is produced, we can find mass of C 12 H 22 O 11 :
$\mathrm{n}(\mathrm{CO} 2)=2.30 \mathrm{~g} / 44=0.0523 \mathrm{~mol}$
$\mathrm{n}(\mathrm{C} 12 \mathrm{H} 22011) / \mathrm{n}(\mathrm{CO} 2)=1 / 12$

So, $n(C 12 H 22011)=0.0523 / 12=0.00436 \mathrm{~mol}$.

Then, mass of C 12 H 22011 is: $0.00436 \mathrm{~mol} * 342=1.49 \mathrm{~g}$.

So, mass of NaCl is $6.00-1.49=4.51 \mathrm{~g}$.

To find mass percentage of NaCl we can use proportion:
$6.00 \mathrm{~g}-100 \%$
4.51g - x\%

So, $x=(4.51 * 100) / 6.00 \mathrm{~g}=75.16 \%$ of NaCl in the mixture.

