Answer on Question#40493-Chemistry-Other

Question

Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Assume 0.140 mol of N_2 and 0.460 mol of H_2 are present initially.

1) After complete reaction, how many moles of ammonia are produced?

2) How many moles of H₂ remain?

3) How many moles of N₂ remain?

4) What is the limiting reactant?

Solution

As is clear from the chemical equation, the molar ratio $H_2/N_2 = 3/1$.

 $n(H_2)/n(N_2) = 0.460 / 0.140 \approx 3.286$, i.e. H_2 was taken in excess and some part of it remains unreacted. N₂ is limiting reactant, it reacts completely and **0 moles of N₂ remains** unreacted. Number of moles of NH₃ produced may be calculated from the proportion:

 $1 \text{ mol} (N_2) - 2 \text{ mol} (NH_3)$ (according to the chemical equation)

0.140 mol (N₂) – X mol (NH₃)

 $X = 0.140 \cdot 2 / 1 = 0.280$ mol of ammonia are produced.

Number of moles of H₂ reacted:

 $1 \text{ mol}(N_2) - 3 \text{ mol}(H_2)$ (according to the chemical equation)

0.140 mol (N₂) – Y mol (H₂)

 $Y = 0.140 \cdot 3 / 1 = 0.420 \text{ mol}$

Number of moles of H₂ remained:

0.460 - 0.420 = 0.040 mol of H₂ remains

Answers:

1) 0.280 moles 2) 0.040 moles 3) 0 moles

4) N₂