Answer on Question\#40493-Chemistry-Other

Question

Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Assume 0.140 mol of N_{2} and 0.460 mol of H_{2} are present initially.

1) After complete reaction, how many moles of ammonia are produced?
2) How many moles of H_{2} remain?
3) How many moles of N_{2} remain?
4) What is the limiting reactant?

Solution

As is clear from the chemical equation, the molar ratio $\mathrm{H}_{2} / \mathrm{N}_{2}=3 / 1$.
$n\left(\mathrm{H}_{2}\right) / n\left(\mathrm{~N}_{2}\right)=0.460 / 0.140 \approx 3.286$, i.e. H_{2} was taken in excess and some part of it remains unreacted. $\mathbf{N}_{\mathbf{2}}$ is limiting reactant, it reacts completely and $\mathbf{0}$ moles of $\mathbf{N}_{\mathbf{2}}$ remains unreacted.
Number of moles of NH_{3} produced may be calculated from the proportion:
$1 \mathrm{~mol}\left(\mathrm{~N}_{2}\right)-2 \mathrm{~mol}\left(\mathrm{NH}_{3}\right)$ (according to the chemical equation)
$0.140 \mathrm{~mol}\left(\mathrm{~N}_{2}\right)-\mathrm{X} \mathrm{mol}\left(\mathrm{NH}_{3}\right)$
$\mathrm{X}=0.140 \cdot 2 / 1=0.280 \mathrm{~mol}$ of ammonia are produced.
Number of moles of H_{2} reacted:
$1 \mathrm{~mol}\left(\mathrm{~N}_{2}\right)-3 \mathrm{~mol}\left(\mathrm{H}_{2}\right)$ (according to the chemical equation)
$0.140 \mathrm{~mol}\left(\mathrm{~N}_{2}\right)-\mathrm{Y} \mathrm{mol}\left(\mathrm{H}_{2}\right)$
$Y=0.140 \cdot 3 / 1=0.420 \mathrm{~mol}$
Number of moles of H_{2} remained:
$0.460-0.420=\mathbf{0 . 0 4 0} \mathbf{~ m o l}$ of $\mathbf{H}_{\mathbf{2}}$ remains

Answers:

1) 0.280 moles
2) 0.040 moles
3) 0 moles
4) N_{2}
