Answer on Question #40489, Chemistry, Other

<u>Task:</u>

What is the maximum mass of S_8 that can be produced by combining 84.0 g of each reactant?

8SO₂+16H₂S=3S₈+16H₂O

Answer:

$$v = \frac{m}{M}$$

where m-mass, grams;

M-molar mass, gram/mol.

M(SO₂)=64.1g/mol M(H₂S)=34.1g/mol
$$v(SO_2)=\frac{84.0}{64.1}=1.31$$
 moles

$$v(H_2S) = \frac{84.0}{34.1} = 2.46$$
 moles

Let's calculate the amount of S_8 , that can be produced from 84.0 grams of each reactant:

$$v(S_8) = \frac{v(SO_2)}{8} \cdot 3 = \frac{1.31}{8} \cdot 3 = 0.49 \text{ moles}$$

 $v(S_8) = \frac{v(H_2S)}{16} \cdot 3 = \frac{2.46}{16} \cdot 3 = 0.46 \text{ moles}$

As we can see from the previous calculations, the amount of H_2S is the determining factor.

There will be an excess amount of SO2. That is why:

 $m(S_8)=v(S_8)\cdot M(S_8)$

M(S₈)=256.5 g/mol

That is why the maximum mass of S_8 , that can be produced is equal to:

 $m(S_8)=0.46\cdot 256.5=118 g$