Answer on Question\#40485-Chemistry-Other

Question

Given the following chemical equation: $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})+\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{N}_{2}(\mathrm{~g})$
Determine how many grams of N_{2} are produced by 8.49 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ and 5.72 g of $\mathrm{N}_{2} \mathrm{H}_{4}$.

Solution

$\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol}, \mathrm{M}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)=32 \mathrm{~g} / \mathrm{mol}, \mathrm{M}\left(\mathrm{N}_{2}\right)=28 \mathrm{~g} / \mathrm{mol}$.

Number of moles of the reactants:
$\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=8.49 / 18=0.47 \mathrm{~mol}$
$\mathrm{n}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)=\mathrm{m}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right) / \mathrm{M}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)=5.72 / 32=0.18 \mathrm{~mol}$

The actual molar ratio of the reactants:
$\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{n}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)=0.47 / 0.18=2.61 / 1$

As is clear from the chemical equation the theoretical molar ratio $n\left(\mathrm{H}_{2} \mathrm{O}\right) / n\left(\mathrm{~N}_{2} \mathrm{H}_{4}\right)=2 / 1$. So, water is taken in excess and some of it remains unreacted. That is why the mass of N_{2} produced must be calculated based on the amount of $\mathrm{N}_{2} \mathrm{H}_{4}$ not $\mathrm{H}_{2} \mathrm{O}$.

As is clear from the chemical equation the molar ratio $n\left(N_{2}\right) / n\left(N_{2} H_{4}\right)=1 / 1$, i.e. $n\left(N_{2}\right)=0.18 \mathrm{~mol}$.

Mass of N_{2} produced: $m\left(N_{2}\right)=n\left(N_{2}\right) \cdot M\left(N_{2}\right)=0.18 \cdot 28=5.04 \mathrm{~g}$

Answer: 5.04 g

