Answer on Question \#40484, Chemistry, Other

Question

Balance the following combustion reaction in order to answer the following questions. Use lowest whole-number coefficients.
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
You are given 7.5 moles of O_{2} to react with $1.80 \times 10^{2} \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}$. Upon completion of the reaction, will there be any remaining $\mathrm{C}_{2} \mathrm{H}_{4}$?

Answer

$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Stoichiometric ratio: $\mathrm{n}\left(\mathrm{O}_{2}\right) / \mathrm{n}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=3$.

Quantity of $\mathrm{C}_{2} \mathrm{H}_{4}$:
$\mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=28 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=1.80 \times 10^{2} \mathrm{~g} / 28 \mathrm{~g} / \mathrm{mol}=6.42 \mathrm{~mol}$

Given ratio:
$n\left(\mathrm{O}_{2}\right) / \mathrm{n}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=7.5 / 6.42=1.17$.
Given ratio is lesser than the stoichiometric ratio, hence $\mathrm{C}_{2} \mathrm{H}_{4}$ is in excess (there is not enough O_{2} to combust all the $\mathrm{C}_{2} \mathrm{H}_{4}$) and will remain upon completion of the reaction.

