Answer on Question \#40480, Chemistry, Other

Task:

Glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is used as an energy source for the human body. The overall reaction in the body is described by the equation:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Calculate the number of grams of oxygen, required to convert 43.0 g of glucose to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Also compute the number of grams of CO_{2} produced.

Answer:

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$v=\frac{m}{M}$
where m-mass, grams;
M-molar mass, gram/mol.
$\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=180 \mathrm{~g} / \mathrm{mol}$
$v\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=\frac{43.0}{180}=0.24$ moles
The amount of moles of O_{2} is 6 times greater, than that of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$:
$v\left(\mathrm{O}_{2}\right)=6 \cdot v\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=6 \cdot 0.24=1.44$ moles
$\mathrm{m}\left(\mathrm{O}_{2}\right)=\mathrm{v}\left(\mathrm{O}_{2}\right) \cdot \mathrm{M}\left(\mathrm{O}_{2}\right)$
$\mathrm{M}\left(\mathrm{O}_{2}\right)=32 \mathrm{~g} / \mathrm{mol}$
That is why the mass of O_{2} is equal to:
$\mathrm{m}\left(\mathrm{O}_{2}\right)=1.44 \cdot 32.0=46.1 \mathrm{~g}$
$v\left(\mathrm{CO}_{2}\right)=v\left(\mathrm{O}_{2}\right)=6 \cdot v\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=6 \cdot 0.24=1.44$ moles
$m\left(\mathrm{CO}_{2}\right)=v\left(\mathrm{CO}_{2}\right) \cdot \mathrm{M}\left(\mathrm{CO}_{2}\right)$
$\mathrm{M}\left(\mathrm{CO}_{2}\right)=44.0 \mathrm{~g} / \mathrm{mol}$
That is why the mass of CO_{2} is equal to:
$\mathrm{m}\left(\mathrm{CO}_{2}\right)=1.44 \cdot 44.0=63.4 \mathrm{~g}$

