Answer on Question \#40478-Chemistry - Other

Question

In a chemical reaction, exactly 2 mol of substance A react to produce exactly 3 mol of substance B

$$
2 \mathrm{~A} \rightarrow 3 \mathrm{~B}
$$

How many molecules of substance B are produced when 29.2 g of substance A reacts? The molar mass of substance A is $26.6 \mathrm{~g} / \mathrm{mol}$.

Step 1: Convert the mass of A to moles.
Step 2: Convert the number of moles of A to the number of moles of B.
Step 3: Convert the number of moles of B to the molecules of B.

Answer:

Step 1. Number of moles of substance A equals:

$$
n(A)=\frac{m}{M}
$$

$m-$ Mass of $A, m=29.2 \mathrm{~g}$.
M - Molar mass of $\mathrm{A}, \mathrm{M}=26.6 \mathrm{~g} / \mathrm{mol}$.
Then number of moles in 29.2 g of substance A equals:

$$
n(A)=\frac{29.2}{26.6}=1.10 \mathrm{~mol}
$$

Step 2. Make a proportion:
2 mol of substance A react to produce 3 mol of substance B 1.10 mol of substance $A-x$ moles of substance B

So, the number of moles of substance B produced from 29.2 g of substance A equals:

$$
\begin{gathered}
x=\frac{1.10 \cdot 3}{2}=1.65 \mathrm{~mol} \\
\mathrm{n}(\mathrm{~B})=\mathrm{x}=1.65 \mathrm{~mol}
\end{gathered}
$$

Step 3. Number of molecules of substance B equals:

$$
N=n(B) \cdot N_{A}
$$

N_{A} - the Avogadro constant, $\mathrm{N}_{\mathrm{A}}=6.022 \cdot 10^{23}$.

$$
N=1.65 \cdot 6.022 \cdot 10^{23}=9.94 \cdot 10^{23}
$$

Answer: $9.94 \cdot 10^{23}$ molecules of substance B.

