Answer on Question \#40476 - Chemistry - Other

Question

Small quantities of oxygen can be prepared in the laboratory by heating potassium chlorate, $\mathrm{KClO}_{3}(\mathrm{~s})$. The equation for the reaction is

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

Calculate how many grams of $\mathrm{O}_{2}(\mathrm{~g})$ can be produced from heating 95.9 grams of $\mathrm{KClO}_{3}(\mathrm{~s})$.

Answer:

Molar mass of KClO_{3} equals:
$M\left(\mathrm{KClO}_{3}\right)=M(K)+M(C l)+3 M(0)=39.1+35.5+3 \cdot 16.0=122.6 \frac{\mathrm{~g}}{\mathrm{~mole}}$
Mass of 2 moles of potassium chlorate equals:

$$
2 \cdot 122.6=245.2 g
$$

Molar mass of O_{2} equals:

$$
M\left(O_{2}\right)=2 M(O)=2 \cdot 16.0=32.0 \frac{g}{\mathrm{~mole}}
$$

Mass of 3 moles of O_{2} equals:

$$
3 \cdot 32.0=96 g
$$

Then we make a proportion:
245.2 g of KClO_{3} produce $96.0{\mathrm{~g} \text { of } \mathrm{O}_{2}}$
95.9 g of $\mathrm{KClO}_{3}-x \mathrm{~g}$ of O_{2}
$x=\frac{95.9 \cdot 96.0}{245.2}=37.5 \mathrm{~g}$
Answer: $\mathrm{m}\left(\mathrm{O}_{2}\right)=37.5 \mathrm{~g}$.

