Answer on Question #40476 - Chemistry – Other

Question

Small quantities of oxygen can be prepared in the laboratory by heating potassium chlorate, KClO₃(s). The equation for the reaction is

$$2KCIO_3 \rightarrow 2KCI + 3O_2$$

Calculate how many grams of $O_2(g)$ can be produced from heating 95.9 grams of $KCIO_3(s)$.

Answer:

Molar mass of KClO₃ equals:

$$M(KClO_3) = M(K) + M(Cl) + 3M(O) = 39.1 + 35.5 + 3 \cdot 16.0 = 122.6 \frac{g}{mole}$$

Mass of 2 moles of potassium chlorate equals:

$$2 \cdot 122.6 = 245.2 g$$

Molar mass of O₂ equals:

$$M(O_2) = 2M(O) = 2 \cdot 16.0 = 32.0 \frac{g}{mole}$$

Mass of 3 moles of O₂ equals:

$$3 \cdot 32.0 = 96 g$$

Then we make a proportion:

245.2 g of KClO₃ produce 96.0 g of O₂

95.9 g of
$$KClO_3 - x$$
 g of O_2

$$x = \frac{95.9 \cdot 96.0}{245.2} = 37.5 \, g$$

Answer: $m(O_2) = 37.5 g$.