Answer on Question \#40468-Chemistry - Other

Question

For the following chemical reaction, how many moles of lead (II) iodide will be produced from 136 g of potassium iodide?
$2 \mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}$

Answer:

Number of moles equals:

$$
n=\frac{m}{M}
$$

m - Mass of $\mathrm{KI}, \mathrm{m}=136 \mathrm{~g}$.
M - Molar mass of KI , equals:

$$
M=M(K)+M(I)=39.1+126.9=166.0 \frac{g}{\text { mole }}
$$

Then number of moles in 136 g of KI equals:

$$
n=\frac{136}{166}=0.819 \mathrm{~mol}
$$

According to the reaction:

$$
\begin{aligned}
& 2 \text { mol of } \mathrm{KI} \text { produces } 1 \mathrm{~mol} \text { of } \mathrm{PbI}_{2} \text { (lead (II) iodide) } \\
& 0.819 \text { mol of } \mathrm{KI}-x \text { moles of } \mathrm{PbI}_{2}
\end{aligned}
$$

So, the number of moles of lead (II) iodide produced from 136 g of potassium iodide equals:

$$
x=\frac{0.819 \cdot 1}{2}=0.41 \mathrm{~mol}
$$

Answer: $\mathrm{n}\left(\mathrm{PbI}_{2}\right)=0.41 \mathrm{~mol}$.

