Answer on Question \#40465 - Chemistry - Other

Question

In the following reaction, how many grams of potassium phosphate, $\mathrm{K}_{3} \mathrm{PO}_{4}$, will be produced from 62.3 g of potassium hydroxide, KOH ?
$3 \mathrm{KOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{~K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$

Answer:

Molar mass of KOH equals:

$$
M(K O H)=M(K)+M(O)+M(H)=39.1+16.0+1.008=56.108 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

Mass of 3 moles of potassium hydroxide equals:

$$
3 \cdot 56.108=168.324 g
$$

Molar mass of $\mathrm{K}_{3} \mathrm{PO}_{4}$ equals:

$$
M\left(K_{3} P O_{4}\right)=3 M(K)+M(P)+4 M(O)=3 \cdot 39.1+30.97+4 \cdot 16.0=212.27 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

Therefore, mass of 1 mole of potassium phosphate equals 212.27 g .
Then we make a proportion:
168.324 g of KOH react to produce 212.27 g of $\mathrm{K}_{3} \mathrm{PO}_{4}$

$$
\begin{aligned}
& 62.3 \mathrm{~g} \text { of } \mathrm{KOH}-x \mathrm{~g} \text { of } \mathrm{K}_{3} \mathrm{PO}_{4} \\
& x=\frac{62.3 \cdot 212.27}{168.324}=78.6 \mathrm{~g}
\end{aligned}
$$

Answer: $\mathrm{m}\left(\mathrm{K}_{3} \mathrm{PO}_{4}\right)=78.6 \mathrm{~g}$.

