Answer on Question #39969 - Chemistry - Inorganic Chemistry

Question

1.30g H2 is allowed to react with 10.4g N2 producing 2.74g NH3. Calculate the theoretical yield for the reaction and the percentage yield of the reaction.

Answer:

A balanced equation for the reaction:

$$3H_2 + N_2 = 2NH_3$$

Number of moles equals:

$$n = \frac{m}{M}$$

m – Mass of the substance, g.

M – Molar mass of the substance, g/mol.

Molar masses of the reactants equal:

$$M(H_2) = 2.016 \text{ g/mol}, M(N_2) = 28.014 \text{ g/mol}$$

Number of moles of the reactants:

$$n(H_2) = \frac{m(H_2)}{M(H_2)} = \frac{1.30}{2.016} = 0.645 \text{ moles}$$

$$n(N_2) = \frac{m(N_2)}{M(N_2)} = \frac{10.4}{28.014} = 0.371 \text{ moles}$$

Then we make a proportion:

3 moles of H₂ react with 1 moles of N₂

0.645 moles of $H_2 - x$ moles of N_2

$$x = \frac{0.645 \cdot 1}{3} = 0.215 \text{ moles of } N_2 \text{ will react with } 0.645 \text{ moles of } H_2$$

We have 0.371 moles of nitrogen, therefore it is in excess. If it is in excess then the hydrogen is the limiting reactant.

We need to make another proportion to calculate the theoretical yield for the reaction:

3 moles of H₂ produce 2 moles of NH₃

0.645 moles of $H_2 - x$ moles of NH_3

$$x = \frac{0.645 \cdot 2}{3} = 0.43$$
 moles of NH₃ could be produced

The theoretical yield for the reaction equals:

$$m_t(NH_3) = n(NH_3) \cdot M(NH_3) = 0.43 \cdot 15.015 = 6.46 g$$

The percentage yield of the reaction equals:

%yield =
$$\frac{m_p(NH_3)}{m_t(NH_3)} \times 100\% = \frac{2.74}{6.46} \times 100\% = 42.4\%$$

Answer: Theoretical yield equals 6.46 g of NH₃, percentage yield equals 42.4%.