Answer on Question\#39963 - Chemistry - Physical Chemistry

Question:

a) Calculate the translation energy/molecule at 300 K for the nitrogen molecule?
b) Calculate the translation energy/mole at 300 K for the nitrogen molecule?
c) Calculate the Number Density at 298.2 K for the nitrogen molecule?
d) Calculate the Concentration at 298.2 K for the nitrogen molecule?

Answer:

a) Every molecule has 3 translational degrees of freedom. Each translational degree of freedom contains $1 / 2 \mathrm{kT}$ energy per molecule. Hence the total translational energy can be calculated as following:
$\mathrm{E}_{\mathrm{T}}\left(\mathrm{N}_{2}\right)_{\text {molecule }}=1 / 2 \mathrm{kT} \cdot 3=3 / 2 \mathrm{kT}=3 / 2 \cdot 1.381 \cdot 10^{-23} \cdot 300=6.21 \cdot 10^{-21} \mathrm{~J}$
b) The translational energy per mole can be calculated multiplying the energy per molecule by Avogadro's number:
$\mathrm{E}_{\mathrm{T}}\left(\mathrm{N}_{2}\right)_{\text {mole }}=3 / 2 \mathrm{kT} \cdot \mathrm{N}_{\mathrm{A}}=3 / 2 \mathrm{RT}=3740 \mathrm{~J} / \mathrm{mol}$
c) The number density v is defined as the number of molecules per unit of volume:
$v=N / V ; \quad N=n \cdot N_{A}$
The volume can be obtained from the ideal gas law:
$\mathrm{pV}=\mathrm{nRT} ; \quad \mathrm{V}=\mathrm{nRT} / \mathrm{p}$
Substituting the equation for volume into the expression for number density we can obtain the final expression:
$v=\frac{n N_{A} p}{n R T}=\frac{N_{A} p}{R T}$
The specific pressure data was not given, so we will use the atmospheric pressure for calculations.
$v=\frac{N_{A} p}{R T}=\frac{6.022 \cdot 10^{23} \mathrm{~mol}^{-1} \cdot 101325 \mathrm{~Pa}}{8.3145 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 298.2 \mathrm{~K}}=2.46 \cdot 10^{25} \mathrm{~m}^{-3}=2.46 \cdot 10^{22} \mathrm{l}^{-3}$
d) The concentration is the number of moles per unit of volume.
$c=n / V$
$\mathrm{pV}=\mathrm{nRT} \quad \Rightarrow \quad \mathrm{p}=\mathrm{cRT} ; \quad \mathrm{c}=\mathrm{p} / \mathrm{RT}$
$c=\frac{101325 \mathrm{~Pa}}{8.3145 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 298.2 \mathrm{~K}}=40.87 \frac{\mathrm{~mol}}{\mathrm{~m}^{3}}=40.87 \frac{\mathrm{~mol}}{\mathrm{~m}^{3}}=0.04087 \frac{\mathrm{~mol}}{\mathrm{l}^{3}}$

