Answer on Question\#39839 - Chemistry - Other

Questions

1) If 56.0 mL of BaCl_{2} solution is needed to precipitate all the sulfate ion in a 740 mg sample of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, what is the molarity of the solution?
2) If 43.0 mL of 0.210 M HCl solution is needed to neutralize a solution of $\mathrm{Ca}(\mathrm{OH})_{2}$, how many grams of $\mathrm{Ca}(\mathrm{OH})_{2}$ must be in the solution?

Answer

1) The total chemical reaction of this process:
$\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2}=2 \mathrm{NaCl}+\mathrm{BaSO}_{4}$
The molarity of a solution could be calculated according to the formula:
$C_{M}=\frac{v}{V}$
where v - moles of the solute, moles;
V-volume of the solvent, I.
$v=\frac{m}{M}$
where m-mass of the solute, grams;
M-molar mass of the solute, gram/moles.
$\mathrm{M}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=142 \mathrm{~g} / \mathrm{mol}$
$v\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=\frac{0.74}{142}=0.0052 \mathrm{~mol}$
$v\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=v\left(\mathrm{BaCl}_{2}\right)=0.0052 \mathrm{~mol}$
$C_{M}\left(\mathrm{BaCl}_{2}\right)=\frac{0.0052}{0.056}=0.093 \mathrm{M}$
2) The total chemical reaction of this process:
$2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

The molarity of a solution could be calculated according to the formula:
$\mathrm{C}_{\mathrm{M}}=\frac{\mathrm{v}}{\mathrm{V}}$
where v - moles of the solute, moles;
V-volume of the solvent, I.
According to this equation, the amount of moles is:
$v=C_{M} \cdot V$
$v(\mathrm{HCl})=0.210 \cdot 0.043=0.0090 \mathrm{~mol}$
$\mathrm{v}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=\frac{\mathrm{v}(\mathrm{HCl})}{2}=\frac{0.0090}{2}=0.0045 \mathrm{~mol}$
$v=\frac{m}{M} \quad m=v \cdot M$
where m-mass of the solute, grams;
M-molar mass of the solute, gram/moles.
$\mathrm{M}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=74 \mathrm{~g} / \mathrm{mol}$
$\mathrm{m}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=0.00452 \cdot 74=0.33 \mathrm{~g}$

