Answer on Question\#39740-Chemistry-Inorganic Chemistry

Question

An element has a body centred cubic (bcc) structure with a cell edge of 288 pm . The density of the element is $7.2 \mathrm{~g} / \mathrm{cm}^{3}$. How many atoms are present in 208 g of the element?

Solution

Volume of given mass of the element:

$$
V=\frac{m}{\rho}=\frac{208 \mathrm{~g}}{7.2 \mathrm{~g} / \mathrm{cm}^{3}}=29 \mathrm{~cm}^{3}=2.9 \cdot 10^{-5} \mathrm{~m}^{3}
$$

Volume of an elementary cell ($a-$ cell edge):

$$
V_{\text {cell }}=a^{3}=(288 \mathrm{pm})^{3}=\left(288 \cdot 10^{-12} \mathrm{~m}\right)^{3}=2.4 \cdot 10^{-29} \mathrm{~m}^{3}
$$

Number of the cells in given mass of the element:

$$
n_{\text {cells }}=\frac{V}{V_{\text {cell }}}=\frac{2.9 \cdot 10^{-5} \mathrm{~m}^{3}}{2.4 \cdot 10^{-29} \mathrm{~m}^{3}}=1.2 \cdot 10^{24} \mathrm{cells}
$$

In case of body centred structure each elementary cell contains 2 atoms: one in the cell centre and 8 eighth parts $(1+8 \cdot 1 / 8=2)$.

So, the number of atoms is two times greater than the number of cells:

$$
n_{\text {atoms }}=2 \cdot n_{\text {cells }}=2 \cdot 1.2 \cdot 10^{24} \text { cells }=2.4 \cdot 10^{24} \text { atoms }
$$

Answer: $2.4 \cdot 10^{24}$ atoms

