Answer on Question \#39579-Chemistry - Other

Question

How many moles of alcohol $(\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH})$ are there in $4.88 \times 10^{\wedge} 4 \mathrm{~L}$? The density of alcohol is $0.79 \mathrm{~g} / \mathrm{mL}$.

Answer:

Mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ equals:

$$
m=\rho V
$$

ρ - Density of alcohol, $\rho=0.79 \mathrm{~g} / \mathrm{mL}=790 \mathrm{~g} / \mathrm{l}$.
V - Volume of alcohol, $V=4.88 \times 10^{\wedge} 4 \mathrm{~L}$:

$$
m=790 \cdot 4.88 \cdot 10^{4}=3.8552 \cdot 10^{7} \mathrm{~g}
$$

Number of moles equals:

$$
n=\frac{m}{M}
$$

m - Mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, g.
M - Molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, equals:

$$
M=2 M(C)+6 M(H)+M(O)=2 \cdot 12+6 \cdot 1+16=46 \frac{g}{\text { mole }}
$$

Then number of moles in 10.0 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ equals:

$$
n=\frac{3.8552 \cdot 10^{7}}{46}=838087 \text { moles }=8.4 \cdot 10^{5} \mathrm{moles}
$$

Answer: $\mathrm{n}=8.4 \cdot 10^{5}$ moles.

