Answer on Question\#39444 - Chemistry - Inorganic Chemistry

Question

0.1 M Na 2 HPO 4 and 0.2 M NaH 2 PO 4 .How much stock solutions and H 2 O would be needed to prepare $0.5 \mathrm{M}, 2 \mathrm{~L}$ of phosphate buffer at pH 7.4 ? (pKa fr H 2 PO 4 :7.2) can you guide me through it? i don't understand how this should be done.thanks

Answer:

The pH of buffer solutions can be determined using the following equation:
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\lg [\mathrm{B}] /[\mathrm{HB}]$
where $[\mathrm{HB}]$ is the concentration of acid, and $\left[\mathrm{B}^{-}\right]$is the base concentration. In case of discussed buffer, the acid is $\mathrm{NaH}_{2} \mathrm{PO}_{4}$, and the base is $\mathrm{Na}_{2} \mathrm{HPO}_{4}$. Hence, knowing the pH and pK_{a} values, we can obtain the molar ratio between acidic and basic compounds:
$\lg \left[\mathrm{Na}_{2} \mathrm{HPO}_{4}\right] /\left[\mathrm{NaH}_{2} \mathrm{PO}_{4}\right]=\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}$
$\left[\mathrm{Na}_{2} \mathrm{HPO}_{4}\right] /\left[\mathrm{NaH}_{2} \mathrm{PO}_{4}\right]=1.58$
Dilution does not affect on pH of the buffer, hence we can simply compare the amounts of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO} 4$ in the final solution.

Let " a " denote the volume of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and " b " denote the volume of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$.
$\mathrm{n}\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)=\mathrm{a} \cdot 0.2 ; \mathrm{n}\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)=\mathrm{b} \cdot 0.1$
$\mathrm{n}\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right) / \mathrm{n}\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)=1.58$
$a / b=3.16$
So, to obtain buffer with $\mathrm{pH}=7.4$ you should take 3.16 parts of $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ per 1 part of 0.2 M $\mathrm{NaH}_{2} \mathrm{PO}_{4}$.

