Answer on Question#39444 - Chemistry - Inorganic Chemistry

Question

0.1M Na2HPO4 and 0.2M NaH2PO4. How much stock solutions and H2O would be needed to prepare 0.5M,2L of phosphate buffer at pH7.4? (pKa fr H2PO4:7.2) can you guide me through it? i don't understand how this should be done. thanks

Answer:

The pH of buffer solutions can be determined using the following equation:

$$pH = pK_a + lg [B^-]/[HB]$$

where [HB] is the concentration of acid, and [B^-] is the base concentration. In case of discussed buffer, the acid is NaH₂PO₄, and the base is Na₂HPO₄. Hence, knowing the pH and pK_a values, we can obtain the molar ratio between acidic and basic compounds:

 $lg [Na_2HPO_4]/[NaH_2PO_4] = pH - pK_a$

 $[Na_2HPO_4]/[NaH_2PO_4] = 1.58$

Dilution does not affect on pH of the buffer, hence we can simply compare the amounts of NaH_2PO_4 and Na_2HPO_4 in the final solution.

Let "a" denote the volume of NaH₂PO₄ and "b" denote the volume of Na₂HPO₄.

 $n(NaH_2PO_4) = a\cdot0.2$; $n(Na_2HPO_4) = b\cdot0.1$

 $n(Na_2HPO_4)/n(NaH_2PO_4) = 1.58$

a/b = 3.16

So, to obtain buffer with pH = 7.4 you should take 3.16 parts of 0.1M Na_2HPO_4 per 1 part of 0.2M NaH_2PO_4 .