Answer on Question\#39097-Chemisry - Inorganic Chemistry

Question

How many grams of H_{2} are needed to produce 10.71 g of NH_{3} ?

Solution:

NH_{3} can be produced by the reaction:

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Molar mass of H_{2} equals:

$$
M\left(H_{2}\right)=2 M(H)=2 \cdot 1=2 \frac{g}{\text { mole }}
$$

Mass of 3 moles of hydrogen equals:

$$
3 \cdot 2=6 g
$$

Molar mass of NH_{3} equals:

$$
M\left(N H_{3}\right)=M(N)+3 M(H)=14+3 \cdot 1=17 \frac{g}{\text { mole }}
$$

Mass of 2 moles of NH_{3} equals:

$$
2 \cdot 17=34 g
$$

Then we make a proportion:

$$
\begin{gathered}
6 \mathrm{~g} \text { of } \mathrm{H}_{2} \text { produce } 34 \mathrm{~g} \text { of } \mathrm{NH}_{3} \\
x \mathrm{~g} \text { of } \mathrm{H}_{2}-10.71 \mathrm{~g} \text { of } \mathrm{NH}_{3} \\
x=\frac{6 \cdot 10.71}{34}=1.89 \mathrm{~g}
\end{gathered}
$$

Answer: $\mathrm{m}\left(\mathrm{H}_{2}\right)=1.89 \mathrm{~g}$.

