Answer on Question \#39041-Chemistry-Organic Chemistry

Question

A solution is prepared by dissolving 400 g of NaOH in water and then diluting to one liter. The density of the resulting solution is $1.31 \mathrm{~g} / \mathrm{ml}$. Express the concentration of NaOH as
(a) percentage by weight
(b) molarity
(c) normalty
(d) molality

Solution
Given:
$\mathrm{m}=400 \mathrm{~g}$ - mass of the solute,
$\mathrm{V}=1 \mathrm{~L}=1000 \mathrm{~mL}$ - volume of the solution,
$\rho=1.31 \mathrm{~g} / \mathrm{ml}$ - density of the solution,
$\mathrm{M}=40.0 \mathrm{~g} / \mathrm{mol}$ - molar mass of the solute.
(a) Mass of the solution: $m_{s}=V \cdot \rho=1000 \cdot 1.31=1310 \mathrm{~g}=1.31 \mathrm{~kg}$

Percentage by weight:

$$
w t . \%=\frac{m}{m_{s}} 100 \%=\frac{400 \cdot 100}{1310}=30.5 \%_{\text {by } w t .}
$$

(b) Molarity:

$$
C_{M}=\frac{n}{V}=\frac{m}{M \cdot V}=\frac{400}{40.0 \cdot 1}=10 \mathrm{M}
$$

(c) Equivalence factor for $\mathrm{NaOH}-\mathrm{f}_{\text {eq }}=1$, so the normality:

$$
C_{N}=\frac{C_{M}}{f_{e q}}=\frac{10}{1}=10 \mathrm{~N}
$$

(d) Mass of solvent:

$$
m_{\text {sol }}=m_{s}-m=1310-400=910 \mathrm{~g}=0.91 \mathrm{~kg}
$$

Molality:

$$
b=\frac{n}{m_{\text {sol }}}=\frac{m}{M \cdot m_{\text {sol }}}=\frac{400}{40.0 \cdot 0.91}=11.0 \mathrm{~mol} / \mathrm{kg}
$$

Answer: (a) $\mathbf{3 0 . 5} \%_{\text {by wt., }}$ (b) 10 M , (c) $\mathbf{1 0 ~ N , ~ (d) ~} 11.0 \mathrm{~mol} / \mathrm{kg}$.

