Answer on Question \#39040-Chemistry-Organic Chemistry

Questions

(a) What is the molarity of a 0.050 N solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ (calculated on the basis of complete neutralizaton of the alkali)?
(b) What is the normality of a $0.050 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ (based on neutralization of the acid to the $\mathrm{HPO}_{4}{ }^{2-}$ ion)?

Solution

(a) Chemical equation of complete neutralizaton of $\mathrm{Ba}(\mathrm{OH})_{2}$:

$$
\begin{gathered}
\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \text { or } \\
\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Since 2 mol of H^{+}are needed to neutralize one mole of $\mathrm{Ba}(\mathrm{OH})_{2}$, the equivalence factor for $\mathrm{Ba}(\mathrm{OH})_{2}$ in this reaction $f_{e q}=1 / 2$. Molarity of the solution:

$$
C_{M}=C_{N} \cdot f_{e q}=0.050 \cdot 0.500=0.025 \mathrm{M}
$$

(b) Chemical equation of $\mathrm{H}_{3} \mathrm{PO}_{4}$ neutralization to the $\mathrm{HPO}_{4}{ }^{2-}$ ion:

$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \text { or } \\
\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Since 2 mol of OH^{-}are needed to neutralize one mole of $\mathrm{H}_{3} \mathrm{PO}_{4}$ to the $\mathrm{HPO}_{4}{ }^{2-}$ ion, the equivalence factor for $\mathrm{H}_{3} \mathrm{PO}_{4}$ in this reaction $f_{\text {eq }}=1 / 2$. Normality of the solution:

$$
C_{N}=\frac{C_{M}}{f_{e q}}=\frac{0.050}{0.500}=0.100 \mathrm{~N}
$$

Answers: (a) $C_{M}=0.025 \mathrm{M}$, (b) $C_{N}=0.1000 \mathrm{~N}$

