Answer on Question #39040-Chemistry-Organic Chemistry

Questions

- (a) What is the molarity of a 0.050 N solution of $Ba(OH)_2$ (calculated on the basis of complete neutralization of the alkali)?
- (b) What is the normality of a $0.050~M~H_3PO_4$ (based on neutralization of the acid to the HPO_4^{2-} ion)?

Solution

(a) Chemical equation of complete neutralization of Ba(OH)₂:

Ba(OH)₂ + 2 HCl
$$\rightarrow$$
 BaCl₂ + 2 H₂O or
Ba(OH)₂ + 2 H⁺ \rightarrow Ba²⁺ + 2 H₂O

Since 2 mol of H⁺ are needed to neutralize one mole of Ba(OH)₂, the equivalence factor for Ba(OH)₂ in this reaction $f_{eq} = 1/2$. Molarity of the solution:

$$C_M = C_N \cdot f_{eq} = 0.050 \cdot 0.500 = 0.025 M$$

(b) Chemical equation of H₃PO₄ neutralization to the HPO₄²⁻ ion:

$$H_3PO_4 + 2 NaOH \rightarrow Na_2HPO_4 + 2 H_2O or$$

 $H_3PO_4 + 2 OH^- \rightarrow HPO_4^{2-} + 2 H_2O$

Since 2 mol of OH^{-} are needed to neutralize one mole of $H_{3}PO_{4}$ to the HPO_{4}^{2-} ion, the equivalence factor for $H_{3}PO_{4}$ in this reaction $f_{eq} = 1/2$. Normality of the solution:

$$C_N = \frac{C_M}{f_{eq}} = \frac{0.050}{0.500} = 0.100 N$$

Answers: (a) $C_M = 0.025 \text{ M}$, (b) $C_N = 0.1000 \text{ N}$