Question

What volumes of $0.50 \mathrm{M} \mathrm{HNO}_{2}$ and $0.50 \mathrm{M} \mathrm{NaNO}_{2}$ must be mixed to prepare 1.00 L of a solution buffered at $\mathrm{pH}=3.62$?

Solution

pH of given buffer solution is calculated as

$$
p H=p K_{a}+\lg \frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}
$$

For nitrous acid $p K_{a}=3.39$
Thus, we have

$$
3.62=3.39+\lg \frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}
$$

whence

$$
\lg \frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=0.23
$$

and

$$
\frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=10^{0.23}=1.698
$$

Assuming NaNO_{2} dissosiates completely, we can state $\left[\mathrm{NO}_{2}^{-}\right]=\left[\mathrm{NaNO}_{2}\right]$

The concentrations of NaNO_{2} and HNO_{2} in the buffer solution are related to the concentrations of initial solutions ($\left[\mathrm{NO}_{2}^{-}\right]_{0}$ and $\left[\mathrm{HNO}_{2}\right]_{0}$) as follows

$$
\begin{aligned}
& {\left[\mathrm{NO}_{2}^{-}\right]=\frac{\left[\mathrm{NO}_{2}^{-}\right]_{0} \cdot V_{\left(\mathrm{NaNO}_{2}\right)}}{V_{b s}}=\frac{0.50 \cdot V_{\left(\mathrm{NaNO}_{2}\right)}}{1.00}=0.50 \cdot V_{\left(\mathrm{NaNO}_{2}\right)}} \\
& {\left[\mathrm{HNO}_{2}\right]=\frac{\left[\mathrm{HNO}_{2}\right]_{0} \cdot V_{\left(\mathrm{HNO}_{2}\right)}}{V_{b s}}=\frac{0.50 \cdot V_{\left(\mathrm{HNO}_{2}\right)}}{1.00}=0.50 \cdot V_{\left(\mathrm{HNO}_{2}\right)}}
\end{aligned}
$$

where $V_{\left(\mathrm{NaNO}_{2}\right)}$ and $V_{\left(\mathrm{HNO}_{2}\right)}$ - volumes of the initial solutions, $V_{b s}$ - volume of resulting buffer solution.
We know that

$$
V_{\left(\mathrm{NaNO}_{2}\right)}+V_{\left(\mathrm{HNO}_{2}\right)}=V_{b s}=1.00
$$

We have also calculated that

$$
\frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=\frac{0.50 \cdot V_{\left(\mathrm{NaNO}_{2}\right)}}{0.50 \cdot V_{\left(\mathrm{HNO}_{2}\right)}}=\frac{V_{\left(\mathrm{NaNO}_{2}\right)}}{V_{\left(\mathrm{HNO}_{2}\right)}}=1.698
$$

Let us assign $V_{\left(\mathrm{NaNO}_{2}\right)}=x$ and $V_{\left(\mathrm{HNO}_{2}\right)}=y$
We have the set of two equations with two unknown values:

$$
\begin{gathered}
\left\{\begin{array}{c}
x+y=1.00 \\
\frac{x}{y}=1.698
\end{array}\right. \\
x=1.698 \cdot y \\
1.698 \cdot y+y=1.00 \\
2.698 \cdot y=1.00 \\
y=\frac{1.00}{2.698}=0.37 \\
x=1.00-y=1.00-0.37=0.63
\end{gathered}
$$

Answer: $V_{\left(\mathrm{NaNO}_{2}\right)}=0.63 \mathrm{~L}$

$$
V_{\left(\mathrm{HNO}_{2}\right)}=0.37 L
$$

