Question

What is the boiling point of a solution prepared by dissolving 245 g of CaCl₂ into 2055 mL of water?

Solution

The boiling point elevation can be predicted using the equation (Raoult law):

$$\Delta T = K_b \cdot m \cdot i$$

where ΔT – change in boiling point, *i* – number of moles of ions in the solution per mole of dissolved substance, *m* – molality of the solution, and K_b – molal boiling point constant. Molal boiling point constant for water – K_b = 0.51 °C·kg/mol CaCl₂ in water solution dissociates as follows:

$$CaCl_2 \leftrightarrow Ca^{2+} + 2Cl^{-}$$

So, the number of moles of ions in the solution per mole of $CaCl_2$ is equal to three, i.e. i = 3. Molality of the solution is defined as number of moles of dissolved substance (CaCl₂ in this case) per 1 kg of solvent (water in this case):

$$m=\frac{n_{CaCl_2}}{m_w},$$

where n_{CaCl_2} – number of moles of CaCl₂.

Number of moles of $CaCl_2$ may be calculated as a quotient of mass to molar mass. Molar mass of $CaCl_2 - M_{CaCl_2} = 110.98$ g/mole.

$$n_{CaCl_2} = \frac{m_{CaCl_2}}{M_{CaCl_2}} = \frac{245}{110.98} = 2.21 \text{ moles}$$

Mass of water is calculated as product of its volume and density ($\rho_w = 1.0 \text{ g/mL}$)

 $m_w = V_w \cdot \rho_w = 2055 \cdot 1.0 = 2055 \ g = 2.055 \ kg$

So, the solution molality is

$$m = \frac{2.21}{2.055} = 1.07 \text{ moles/kg}$$
,

Now we can calculate the predicted elevation of boiling point: $\Delta T = 0.51 \cdot 1.07 \cdot 3 = 1.64 \ ^{\rm o}{\rm C}$

The boiling point of the solution is by ΔT greater than pure water boiling point ($T = 100^{\circ}$ C) $T_s = T + \Delta T = 100 + 1.64 = 101.64 {}^{\circ}$ C

Answer: 101.64 °C