The volume of the Earth is $1.08321*10^{12}$ km³ and the density of the earth is 5.52 g/cm³. What is the mass of the earth in grams and kilograms?

Solution:

 $d(earth) = 5.52 \text{ g/cm}^3$; $V(earth) = 1.08321 \cdot 10^{12} \text{ km}^3$

 $V(earth) = \frac{m(earth)}{d(earth)}$ then

$$m(earth) = V(earth) \cdot d(earth)$$

in 1 km³ is (1000)³ m³ and it is 1.10^9 m³

in 1 m³ is (100)³ m³ and it is $1 \cdot 10^6$ cm³

That's why in 1 km³ is $1 \cdot 10^9 \cdot 1 \cdot 10^6$ cm³ and it is $1 \cdot 10^{15}$ cm³

$$m(earth) = 1.08321 \cdot 10^{12} \cdot 10^{15} \cdot 5.52 = 5.98 \cdot 10^{27} \approx 6 \cdot 10^{27} g$$

in 1 kg is 1000 g and

in X kg is $6 \cdot 10^{27}$ g

Then X = $\frac{1 \cdot 6 \cdot 10^{27}}{1000} = 6 \cdot 10^{24}$ kg is the mass of the Earth.