When calculating the wavelength range of a wave using this formula: Speed of light= Wavelength x Frequency. I don't understand how to calculate this: $\left(2.998 \times 10^{\wedge} 8\right) /\left(3 \times 10^{\wedge} 14\right)$.

Solution:

$$
v=\lambda * f
$$

Checking of dimensionality

$$
\left[\frac{\mathrm{m}}{\mathrm{~s}}\right]=[\mathrm{m}] \cdot\left[\mathrm{s}^{-1}\right]=\left[\frac{\mathrm{m}}{\mathrm{~s}}\right]
$$

As I understand you want to calculate the wavelength. Then formula will be the following:

$$
\lambda=\frac{\mathrm{v}}{\mathrm{f}}
$$

where λ is the wavelength; f is the frequency; v is the speed of light.
Dimensionality of $[\lambda]=$ [meter] or $[m]$; dimensionality of $[f]=\left[\right.$ second $\left.{ }^{-1}\right]$ or $\left[s^{-1}\right]$; dimensionality of $[\mathrm{v}]=[$ meter $/$ second $]$ or $[\mathrm{m} / \mathrm{s}]$.

Checking of dimensionality

$$
[\mathrm{m}]=\left[\frac{\frac{\mathrm{m}}{\mathrm{~s}}}{\mathrm{~s}^{-1}}\right]=\left[\frac{\mathrm{m} \cdot \mathrm{~s}}{\mathrm{~s}}\right]=[\mathrm{m}]
$$

Then

$$
\lambda=\frac{2.998 \cdot 10^{8}}{3 \cdot 10^{14}}=0.99 \cdot 10^{-6} \approx 1 \cdot 10^{-6}
$$

If you have problem with modular exponentiation I can give you an additional explanations. When it is necessary to divide one degree to another with the same base exponent denominator is subtracted from the exponent of the numerator.

$$
\text { That's why } \frac{10^{8}}{10^{14}}=10^{8-14}=10^{-6}
$$

