Task:

For the reaction
$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
what is the maximum amount of ZnCl_{2} which could be formed from 10.58 g of Zn and 10.9 g of HCl ?

Solution:

From the periodic table of elements:
$\mathrm{MW}(\mathrm{Zn})=65.39 \mathrm{~g} / \mathrm{mol}$
$\mathrm{MW}\left(\mathrm{ZnCl}_{2}\right)=136.4 \mathrm{~g} / \mathrm{mol}$

The number of moles of Zn is
$n(Z n)=m(Z n) / M W(Z n)=10.58 / 65.39=0.1618 \mathrm{~mol}$
The number of moles of HCl is
$\mathrm{n}(\mathrm{HCl})=\mathrm{m}(\mathrm{HCl}) / \mathrm{MW}(\mathrm{HCl})=10.9 / 36.5=0.299 \mathrm{~mol}$
According to the chemical equation the number of moles of Zn is half the number of moles of HCl .
$n(Z n)=n(H C l) / 2=0.299 / 2=0.150 \mathrm{~mol}$ (we have 0.1618 mol of Zn).
That means that HCl is the limiting reactant.

The number of moles of ZnCl_{2} in this reaction is
$n\left(\mathrm{ZnCl}_{2}\right)=\mathrm{n}(\mathrm{HCl}) / 2=0.299 / 2=0.150 \mathrm{~mol}$
The mass of ZnCl_{2} is
$\mathrm{m}\left(\mathrm{ZnCl}_{2}\right)=\mathrm{n}\left(\mathrm{ZnCl}_{2}\right) \cdot \mathrm{MW}\left(\mathrm{ZnCl}_{2}\right)=0.150 \cdot 136.4=20.46 \mathrm{~g}$

Answer: $\mathrm{m}\left(\mathrm{ZnCl}_{2}\right)=20.46 \mathrm{~g}$

