Since ice will condense the colder it gets, can it ever condense enough that it would sink in water?

Answer: Ice will sink in water only when his density will be greater than the density of water. At $0^{\circ} \mathrm{C}$ density of ice is $917 \mathrm{~kg} / \mathrm{m}^{3}$, and the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

If we will cool the ice, his density will increase not enough to reach the value of $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Under normal pressure even at $-200^{\circ} \mathrm{C}$ ice will have density of $935 \mathrm{~kg} / \mathrm{m}^{3}$, which is not enough to sink in water. Only if we will cool the ice under pressure of 207.5 MPa (2048 atm), it will become into a new form of ice - ice III, which has a density of $1140 \mathrm{~kg} / \mathrm{m}^{3}$.

But, ice III exists only under very high pressures, and if we will try to get it into normal conditions, it will transform back into usual ice with a smaller density.

