NaC or Na2C2 is sodium carbide and it's definitely ionic compound.

Several carbides are assumed to be salts of the **acetylide anion** C_2^{2-} (also called percarbide), which has a triple bond between the two carbon atoms. Alkali metals, alkaline earth metals, and lanthanoid metals form acetylides, e.g., sodium carbide **Na₂C₂**, calcium carbide CaC₂, and LaC₂. Lanthanoids also form carbides (sesquicarbides, see below) with formula M₂C₃. Metals from group 11 also tend to form acetylides, such as copper (I) acetylide and silver acetylide. Carbides of the actinide elements, which have stoichiometry MC₂ and M₂C₃, are also described as salt-like derivatives of C₂²⁻.

The C-C triple bond length ranges from 109.2 pm in CaC₂ (similar to ethyne), to 130.3 pm in LaC₂ and 134 pm in UC₂. The bonding in LaC₂has been described in terms of La^{III} with the extra electron delocalised into the antibonding orbital on $C_2^{2^-}$, explaining the metallic conduction.

http://en.wikipedia.org/wiki/Carbide