If the copper is drawn into wire whose diameter is 8.00mm, how many feet of copper can be obtained from the ingot? The density of copper is 8.94 g/cm³. (Assume that the wire is a cylinder whose volume is $V=\pi r^2h$, where r is its radius and h is its height or length.)

Solution:

 $V = \pi r^2 h$ and $V = \frac{m}{\rho}$; where *r* is radius, *h* is length, *m* is mass of copper and ρ is density of copper.

Then

$$V = \pi r^2 h = \frac{m}{\rho}$$
 and $h = \frac{m}{\pi r^2 \rho}$

Let *m* is 1 kg; *r* is radius and it is a half of diameter(4.00mm or 0.004 m); π is a constant and is 3.14; and ρ is density(8.94 g/cm³ or 8940 kg/m³).

$$h = \frac{1}{3.14 \cdot 0.004^2 \cdot 8940} \approx 2.23 \, m$$

1 meter≈3.28 feet so $h \approx 2.23$ m or $h \approx 2.23 \cdot 3.28 \approx 7.31$ feet.

Thus of 1 kg of copper we can get a wire length of 7.31 feet.

Copper based alloy ingots weighed approximately 20 pounds (9.1 kg)// http://en.wikipedia.org/wiki/Ingot

Also if you have one copper of ingot you can get a wire length of 66.52 feet $(7.31 \cdot 9.1 \approx 66.52 \text{ feet})$.