If the copper is drawn into wire whose diameter is 8.00 mm , how many feet of copper can be obtained from the ingot? The density of copper is $8.94 \mathrm{~g} / \mathrm{cm}^{3}$. (Assume that the wire is a cylinder whose volume is $V=\pi r^{2} h$, where r is its radius and h is its height or length.)

Solution:
$V=\pi r^{2} h$ and $V=\frac{m}{\rho}$; where r is radius, h is length, m is mass of copper and ρ is density of copper.

Then

$$
V=\pi r^{2} h=\frac{m}{\rho} \text { and } h=\frac{m}{\pi r^{2} \rho}
$$

Let m is $1 \mathrm{~kg} ; r$ is radius and it is a half of diameter (4.00 mm or 0.004 m); π is a constant and is 3.14 ; and ρ is density $\left(8.94 \mathrm{~g} / \mathrm{cm}^{3}\right.$ or $\left.8940 \mathrm{~kg} / \mathrm{m}^{3}\right)$.
$h=\frac{1}{3.14 \cdot 0.004^{2} \cdot 8940} \approx 2.23 \mathrm{~m}$
1 meter ≈ 3.28 feet
so $h \approx 2.23 \mathrm{~m}$ or $h \approx 2.23 \cdot 3.28 \approx 7.31$ feet.
Thus of 1 kg of copper we can get a wire length of 7.31 feet.
Copper based alloy ingots weighed approximately 20 pounds (9.1 kg)// http://en.wikipedia.org/wiki/Ingot

Also if you have one copper of ingot you can get a wire length of 66.52 feet (7.31-9.1 ≈ 66.52 feet).

