The first, you need to find oxidation state for I . In reaction with $\mathrm{IO}_{3}{ }^{-}$and IO^{-}:
I in $\mathrm{IO}_{3}{ }^{-}$has : $\left.\left(\left(3^{*}(-2)\right)_{\text {oxygen }}+(-1)_{\text {extra }}\right)=-7\right)$, so I is +7
Then it becomes: $\left.\left((-2)_{\text {oxygen }}+(-1)_{\text {extra }}\right)=-3\right)$ so I is $\mathbf{+ 3}$
Simplified reaction:
$\mathrm{I}^{+7}+5 \mathrm{e} \rightarrow \mathrm{I}^{+3}$
Using next statements:
Oxidation is the loss of electrons or an increase in oxidation state by a molecule, atom, or ion.

Reduction is the gain of electrons or a decrease in oxidation state by a molecule, atom, or ion.
$\mathrm{I}^{+7}+5 \mathrm{e} \rightarrow \mathrm{I}^{+3}$
So I^{+7} is reduced
I suppose that reaction between I^{-}and $\mathrm{I}_{3}{ }^{-}$is nor redox reaction, cause there is no changing in oxidation state:
$\mathrm{I}^{-}+\mathrm{I}_{2}=\mathrm{I}_{3}{ }^{-}\left(\mathrm{I}_{2} * \mathrm{I}^{-}\right)$-complex

