Molar ratio can be found from chemical reaction and it is ratio of coefficients before compounds
(There is no reaction between SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$)
So for, $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{O}$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{O}=2 \mathrm{NaOH}
$$

As can you see ratio is $1: 1$
For $\mathrm{Na}_{2} \mathrm{O}$ and SiO_{2} it is:

$$
\mathrm{Na}_{2} \mathrm{O}+\mathrm{SiO}_{2}=\mathrm{Na}_{2} \mathrm{SiO}_{3}
$$

As can you see ratio is $1: 1$ too.

Molar ratios are conversion factors that can be used to relate:

- moles of product formed from a certain number of moles of reactant
- moles of reactant needed to form a certain number of moles of a product.
- the number of moles of a particular reactant needed to completely react with a certain number of moles of a second reactant.

These three factors can be used in opposite way. You can find Molar ratio from some given data, like mass or amount of product or reactant.

