Spectroscopy can explain why nitro compounds have yellow color

IR

The n_{max} for the N=O stretch is 1500-1600 cm⁻¹, compared to the C=O stretch at 1650-1800 cm⁻¹.

NMR

For a CH protons, adjacent to the group, the chemical shift, $d_{1} = 4.3$, due to electron withdrawing effect;

UV

The nitrogen from aromatic ring causes a pronounced shift of l_{max} to longer wavelengths when conjugated to unsaturated p systems, a bathochromic shift. This is why aromatic nitro compounds are often yellow.