NTP is commonly used as a standard condition for testing and documentation of fan capacities:

NTP - Normal Temperature and Pressure - is defined as air at $20^{\circ} \mathrm{C}(293.15 \mathrm{~K}$,) and 1 atm (101.325 kPa).

For solving this task you need to use the ideal gas law, is the equation of state of a hypothetical ideal gas. It is a good approximation to the behaviour of many gases under many conditions, although it has several limitations. The ideal gas law is often introduced in its common form:

$$
P V=n R T
$$

where P is the pressure of the gas, V is the volume of the gas, n is the amount of substance of gas (also known as number of moles), T is the temperature of the gas and R is the ideal, or universal, gas constant.

As you can see, you need to find amount:
$\mathrm{n}=\mathrm{m}(\mathrm{ing}) / \mathrm{Mw}$, where Mw is molecular weight, for CO_{2} it is 44 .
$\mathrm{n}=5000 / 44=113,64 \mathrm{~mol}$
Now,
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$
$\mathrm{V}=113,64 * 8.31 * 293.15 / 101.325=2732,07 \mathrm{~L}$
Volume of CO_{2} at NTP is $\mathbf{2 7 3 2 , 0 7} \mathbf{L}$

