calculate the volume of one mole of oxygen at 27 degree centigrade and 4atm pressure. The molar volume of oxygen at NTP is 22.4 litres.

Solution

NTP - Normal Temperature and Pressure - is defined as air at $20^{\circ} \mathrm{C}\left(293.15 \mathrm{~K}, 68^{\circ} \mathrm{F}\right)$ and 1 atm (101.325 kN/m², $101.325 \mathrm{kPa}, 14.7 \mathrm{psia}, 0$ psig, $29.92 \mathrm{in} \mathrm{Hg}, 760$ torr).

One can use the combined gas law:
$\frac{p V}{T}=$ const
$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$
As we have 1 mol of gas we can rewrite the last formulae $\frac{p_{1} V_{1}^{m}}{T_{1}}=\frac{p_{2} V_{2}^{m}}{T_{2}}$
Where V^{m} is a molar volume.
$\frac{1 \mathrm{~atm} \cdot 22.4 \mathrm{~L}}{293 \mathrm{~K}}=\frac{4 \mathrm{~atm} \cdot V_{2}^{\mathrm{m}}}{(27+273) \mathrm{K}}$
$V_{2}^{m}=\frac{1 \mathrm{~atm} \cdot 22.4 \mathrm{~L} \cdot(27+273) \mathrm{K}}{293 \mathrm{~K} \cdot 4 \mathrm{~atm}}=5.7 \mathrm{~L}$
Answer: $\mathrm{V}^{\mathrm{m}}(300 \mathrm{~K}, 4 \mathrm{~atm})=5.7 \mathrm{~L}$

