Task:

How many liters of water vapor can be produced if 8.9 liters of methane gas (CH4) are combusted, if all measurements are taken at the same temperature and pressure?

Solution:

The chemical equation for the combustion reaction is $CH_4 + 2O_2 = CO_2 + 2H_2O$

If the measurements are taken at STP (T=273 K, p = 1 atm), the number of moles of CH_4 is $n(mol) = V(L) / V_0(L)$

n- number of moles of methane V – volume of CH₄, (L) V₀ – molar volume of the gas at STP, (L) $n(CH_4) = V(CH_4) / V_0 = 8.9 / 22.4 = 0.397$ mol

According to the chemical equation the number of moles of water vapor is twice the number of moles of methane. $n(H_2O) = 2n(CH_4) = 2 \cdot 0.397 = 0.794$ mol

The volume of water vapor is $V(H_2O) = n(mol) \cdot V_0(L) = 0.794 \cdot 22.4 = 17.8 L$

Answer: V(H₂O) = 17.8 L