Equation $N_{1} V_{1}=N_{2} V_{2}$ can help to solve this task. N is normality, Normality (N) is another ratio that relates the amount of solute to the total volume of solution.

It is defined as the number of equivalents per liter of solution:

Normality $=$ number of equivalents $/ 1 \mathrm{~L}$ of solution

There is a very simple relationship between normality and molarity:
$\mathrm{N}=\mathrm{n} \times \mathrm{M}$ (where n is an integer)
n for $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $2\left(2 \mathrm{H}^{+}\right)$
So $\mathrm{N}_{\text {acid }}=2 \mathrm{M}_{\text {acid }}$
n for NaOH is $1 \mathrm{~N}=\mathrm{M}$

If $\mathrm{V}_{\text {acid }}=1 \mathrm{ml}$
$\mathrm{V}_{\text {base }}=12.6 \mathrm{ml}$
$\mathrm{N}_{\text {base }}=0.1000$

N of acid can be found as:
$\mathrm{N}_{\text {acid }}=\mathrm{N}_{\text {base }} \mathrm{V}_{\text {base }} / \mathrm{V}_{\text {acid }}=0.1000 * 12.6 / 1=1.26$
Molarity is : $\mathrm{N} / 2=1.26 / 2=\mathbf{0 . 6 3} \mathbf{~ M}$

