In 3 dimensions, the volume inside a sphere (that is, the volume of a ball) is derived to be

$$
V=\frac{4}{3} \pi r^{3}
$$

where r is the radius of the sphere and π is the constant pi. But in your case it is even easier, because it is possible to find volume from mass and density:

Density is of a material is its mass per unit volume. The symbol most often used for density is ρ (the lower case Greek letter rho). Mathematically, density is defined as mass divided by volume:

$$
\rho=\frac{m}{V}
$$

From this equation $\mathrm{V}=\mathrm{m} / \rho$
$\mathrm{V}=1.234 \mathrm{~g} / 3.1569 \mathrm{~g} / \mathrm{cm}^{3}=0,391 \mathrm{~cm}^{3}$ or $\mathbf{0 , 0 0 0 3 9 1} \mathbf{L}$

