In chemistry, the molar concentration, c_{i} is defined as the amount of a constituent n_{i} (usually measured in moles - hence the name) divided by the volume of the mixture V :

$$
c_{i}=\frac{n_{i}}{V}
$$

It is also called molarity, amount-of-substance concentration, amount concentration, substance concentration, or simply concentration. The volume V in the definition $c_{i}=n_{i} / V$ refers to the volume of the solution, not the volume of the solvent. One liter of a solution usually contains either slightly more or slightly less than 1 liter of solvent because the process of dissolution causes volume of liquid to increase or decrease. So, if you have one liter of commercial acid the weight of it is:
$\mathrm{m}=1000 \mathrm{ml} * 1.787 \mathrm{~g} / \mathrm{ml}=1767 \mathrm{~g}$
The mass of acid in this case is:
$\mathrm{m}_{\mathrm{a}}=1767 * 86 \% / 100 \%=1519,62 \mathrm{~g}$
Amount of acid is:
1519,62 / $98=\mathbf{1 5 , 5} \mathbf{~ m o l}$ the same is molarity (it was calculated for one liter)
Second part:
If you need $0,2 \mathrm{M}$ solution, it means that it is $0,2 \mathrm{~mol}$ in one liter.
So you need dissolve some volume X of $15,5 \mathrm{M}$ solution that includes $0,2 \mathrm{~mol}$ of acid.

If 1000 ml includes 15.5 mol
X ml includes 0,2 moles
$\mathrm{x}=12.9 \mathrm{ml}$
So you need mix 12.9 ml of commercial acid with $987,1 \mathrm{ml}$ of water. (Together it's one liter.)

