Experimentally, we know that the vapor pressure of the solvent above a solution containing a non-volatile solute (i.e., a solute that does not have a vapor pressure of its own) is directly proportional to the mole fraction of solvent in the solution. This behavior is summed up in Raoult's Law:

$$
\mathbf{P}_{\text {solvent }}=\mathbf{X}_{\text {solvent }} \mathbf{P}_{\text {solvent }}^{0}
$$

where:
$\mathbf{P}_{\text {solvent }}$ is the vapor pressure of the solvent above the solution,
$\mathbf{X}_{\text {solvent }}$ is the mole fraction of the solvent in the solution,
$\mathbf{P}_{\text {solvent }}{ }^{\text {is }}$ the vapor pressure of the pure solvent.

From reference data $\mathrm{P}^{0}=0.6 \mathrm{kPa}$ at 0 C
P must be 0.5 kPa ,so X is next:
$0.5=x * 0.6$
$\mathrm{x}=0.8333$, so
n of water $=100 / 18=5.55 \mathrm{~mol}$
n of urea $=\mathrm{x} /(5.55+\mathrm{x})=(1-0.8333)$
$\mathrm{x}=1,11 \mathrm{~mol}$
Mw of urea $=60$
$\mathrm{m}=\mathrm{n} * \mathrm{Mw}=60 * 1,11=\mathbf{6 . 6 6} \mathbf{g}$

